A simple and effective technique to variationally interpret the structure of SUSY partners of mirror image potentials

Neetik Mukherjee

Received: 1 November 2012 / Accepted: 30 November 2012 / Published online: 19 December 2012
© Springer Science+Business Media New York 2012

Abstract

Precise supersymmetric partner potentials can be generated for exactly solvable problems of the stationary Schrödinger equation. Construction of isospectral potential is not always possible for exactly solvable systems. This is a restriction, as most problems are not exactly solvable. Employment of mirror-image property can help to construct an exact isospectral partner of that potential. These potentials have chemical relevance to enantiomers. In this paper, we present a formulation as modelling to explore the form of SUSY pair of these potentials. Through polynomial fit, we correlate all possible basic SUSY partners and optimise it to best fit polynomial to present a typical energy value of $\mathrm{N}=50$.

Keywords SUSY quantum mechanics • Mirror image potentials • Isospectrality . Enantiomers

1 Introduction

Resurgence in studies of exactly solvable Hamiltonians has taken place with the advent of supersymmetric (SUSY) quantum mechanics [1-23]. After some early work [1], links among SUSY, factorization method and Darboux transformation have been highlighted in the literature [2-5]. One of the most important concepts is the construction isospectral potentials [24]. But curiously, most of the potentials in quantum mechanics are not exactly solvable, and one has to employ variation principle [25,26] or perturbation theory [27] to calculate their approximate wave function as well as energy. Thus barring few potentials, it is impossible to construct their isospectral partner potentials. In this context, mirror image property has been employed to construct the

[^0]isospectral partner potential of asymmetric potentials. In chemistry, isospectral potentials have significant importance but yet not been extensively studied. One can expect this isospectrality especially in nanostructures [28] and charge transfer complexes. Even molecules having same number of electron can have identical spectrum [2931]. Secondly, mirror image property is a well known concept in chemistry. In stereo chemistry enantiomers [32] are well known. Pair of molecules having non-superimposable mirror image structure is called enantiomer. These Enantiomers are two different molecules having same chemical formula but different structure, as a result have different chemical and physical properties but identical energy. Depending upon their optical properties i.e. how the pair of molecules respond to a plane polarized light they are termed as dextro (d) (positive optical rotation meaning clockwise) and levo (l) (negative optical rotation meaning anticlockwise). Thus enantiomer is termed as $d-l$ pair. The most common example of such enantiomers is D-glucose and L-glucose. But D-glucose is only naturally occurring and L-glucose has to be artificially synthesized. But it is also not known how their potentials are related. Then also have same optical activity in magnitude but in opposite directions. In this endeavour our aim is to formulate 1D model to enantiomers. Then we try to construct the SUSY partner of these model potentials. The potentials related by mirror image have same energy spectrum and thereby one can assume how potentials of enantiomers are related in appreciation of their physico-chemical properties. To illustrate this phenomena on the theoretical perspective, property based studies are also elaborated.

2 Concepts and objectives

Isospectrality is a concept where the potentials of different chemical or physical environment have identical energy spectrum. Let us take two isospectral potentials $V_{1}(x)$ and $V_{2}(x) . V_{1}(x)$ and $V_{2}(x)$ are related as

$$
\begin{equation*}
V_{1}(x)=V_{2}(x)+f(x) \tag{1}
\end{equation*}
$$

Because of the fact that $V_{1}(x)$ and $V_{2}(x)$ are isospectral, it can be said that if one applies a perturbation of $f(x)$ on $V_{2}(x)$, this perturbation will only change its eigen functions but not their eigen values. Thus if one knows the eigen function and eigen value of $V_{2}(x)$, then by applying perturbation theory he can easily get the information about the eigen states of these potentials. Although $V_{1}(x)$ and $V_{2}(x)$ have same energy spectrum but one must get energy correction term during parturbative calculations. This is because in Raleigh-Schrödinger perturbation theory [27] to get wave correction term one needs to know the energy correction term of previous order. This is indeed an interesting problem. There is a route to construct isospectral partner potential using SUSY theory [24].

Let us consider a potential $V_{0}(x)$ with ground state normalised eigen function $\psi_{0}(x)$ and energy E_{0}. Then applying the conventional SUSY theory one can easily construct its SUSY partner $V_{3}(x)$ as follows;

$$
\begin{equation*}
V_{3}(x)=V_{0}(x)-2 \frac{d^{2}}{d x^{2}} \ln \psi_{0} \tag{2}
\end{equation*}
$$

The energies of $V_{0}(x)$ and $V_{3}(x)$ are related as

$$
\begin{equation*}
E_{n}^{3}=E_{n+1}^{0} \quad n=0,1,2, \ldots \tag{2a}
\end{equation*}
$$

The energy eigen state E_{0} vanishes for potential $V_{3}(x)$. But the function $\left(\frac{1}{\psi_{0}(x)}\right)$ satisfies the Schrödinger equation with $V_{3}(x)$ and energy E_{0}. One can construct more linearly independent solutions for the same state like $\frac{\int_{-\infty}^{x} \psi_{i}^{2}\left(x^{\prime}\right) d x^{\prime}}{\psi_{0}(x)}$ and the most general solution of the Schrödinger equation with $V_{3}(x)$ and energy E_{0} is $\Psi_{0}\left(x, \lambda_{0}\right)=\frac{\int_{-\infty}^{x} \psi_{i}^{2}\left(x^{\prime}\right) d x^{\prime}+\lambda_{0}}{\psi_{0}(x)}$, where λ_{0} is a real constant which does not have value in the range $-1 \leq \lambda_{0} \leq 0$. This is because the value of integral part in the numerator varies between 0 to 1 . Thus there is always a possibility of vanishing of wave function $\Psi_{0}\left(x, \lambda_{0}\right)$ in the finite range.

Finally, employing the SUSY procedure [1-23], one can add that state E_{0} to a potential

$$
\begin{equation*}
\hat{V}_{0}\left(x, \lambda_{0}\right)=V_{3}(x)-2 \frac{d^{2}}{d x^{2}} \ln \left[\Psi_{0}\left(x, \lambda_{0}\right)\right] \tag{3}
\end{equation*}
$$

Now, $V_{0}(x)$ and $\hat{V}_{0}(x)$ are two isospectral partners having same SUSY partner $V_{3}(x)$. These isospectral partners related as from Eqs. (2) and (3),

$$
\begin{equation*}
\hat{V}_{0}\left(x, \lambda_{0}\right)=V_{0}(x)-2 \frac{d^{2}}{d x^{2}} \ln \left[\psi_{0}(x) \Psi_{0}\left(x, \lambda_{0}\right)\right] \tag{4}
\end{equation*}
$$

These are one parameter family of isospectral potential. Now, one can construct nparameter family of isospectral potential using the same theory. Then isospectral potential and the parent potential have the common nth SUSY partner. Having the following form

$$
\begin{align*}
\hat{V}_{0}\left(x, \lambda_{0} \ldots \lambda_{n-1}\right)= & V_{0}(x)-2 \frac{d^{2}}{d x^{2}} \ln \left[\psi_{0} \psi_{1} \ldots \psi_{n-1} \Psi_{n-1}\left(x, \lambda_{n-1}\right)\right. \\
& \left.\ldots \Psi_{0}\left(x, \lambda_{0}, \lambda_{1} \ldots, \lambda_{n-1}\right)\right] \tag{5}
\end{align*}
$$

The $\frac{1}{\Psi_{i}}$ in Eq. (5) represents the Eigen functions of $\hat{V}_{0}\left(x, \lambda_{0} \ldots \lambda_{n-1}\right)$.
Thus to construct the n-parameter isospectral partner, one needs to know the exact wave function of the parent potential up to $(\mathrm{n}-1)$ th excited state. But the problems are more severe. Firstly, in quantum mechanics most of the potential are not exactly solvable. Even ground states are not exactly known. Moreover the integral part in all $\Psi_{i}(x)$ is difficult to solve. Even in the case of harmonic oscillator, the integral results error function $\left(\operatorname{erfc} c\left(x^{\prime}\right)\right)$ [33]. This is a severe restriction in construction of precise isospectral partner potentials. Secondly in this theory the parent potential and the isospectral partner have at least one common SUSY partner.

Thus simple and effective way out is that to focus on the property, structure and nature of parent potential, and then use those concepts to construct the isospectral partner. The easiest way is to construct their mirror image partner potential and analyse
them. Another objective is to know how the SUSY partners of these two mirror image pair related. In this paper, first we construct the isospectral partner potential of a given asymmetric potential using mirror image property. Then we try to relate them with enantiomers and construct their SUSY partner in precise form. Finally we analyse the SUSY partners. The study of some useful properties of these pair of potentials is also interesting. These types of mirror image potentials have special interests in chemistry as well as physics. In case of symmetric potentials, there is parity. In asymmetric potentials $(-\infty \leq V(x) \leq \infty)$, we always get such mirror image pair. Anharmonic oscillator potentials are always in the centre of interest. Many theories in chemistry and physics are explained using these types of potentials. One needs to choose anharmonic potentials to study quantum chemistry in 1-D model calculations. Even these model potentials are the most physical approximation to the molecular system in 1-Dimension. Thus any theory or demonstration involving anharmonic oscillator potentials have immense physical importance. Here, the potentials of our interest are also anharmonic one.

In this context coupled variation scheme is employed to study the lower energy states ($0-19$), construct the near-exact SUSY partner potential of these pair potentials. Wilson-Sommerfeld quantisation rule [34] is applied for higher excited states of SUSY partner to verify the mirror image property of the constructed SUSY partner potentials.

The organization is as follows. Section 3, will concentrate on formalism. Section 4 will inform about the strategy and trial states. Pilot calculations to demonstrate the basic methods with its various variants will concern us in Sect. 5. Section 6, contains summarization of the major conclusions of these formulation.

3 Formalism

The generalised form of the potential of present interest,

$$
\begin{equation*}
V(x)=\sum_{m=2}^{k} a_{m} x^{m}+\sum_{n=1}^{l} b_{n} x^{n} \tag{6}
\end{equation*}
$$

where, m is even and n is odd, also for bound potential $\mathrm{k}>1$.
These type of potentials consist of symmetric and asymmetric terms and depending upon the value of $\left|b_{n}\right|$ we always get mirror image potential pair. The highest power of x - in these type of potentials must be even and the coefficient with that term also must be positive. Moreover with increase of the symmetric and asymmetric terms in $V(x)$, number of such pair increases. Actually if one replace x by -x in one potential of this form, he will obviously get the other one. The wave function changes according to the potential. Change of co-ordinate will not change the energy. We expect these mirror image potential to be isospectral. These potentials have asymmetric properties of same magnitude with opposite sign. This explains the opposite optical rotation of the enantiomers. The effect of any asymmetric perturbation is different in these types of potentials. This point is similar to the different reactivity of enantiomers towards same reagents.

In this work, as one of the objectives is to verify the mirror image property of the SUSY partner potentials. Theoretically by employing the variation method it is possible to calculate the lower excited state. But in higher excited state it is very difficult to use. Because computation become more costly and time consuming. Even in case of SUSY partners, where there potential form is not compact. Calculation using conventional variational theory is practically impossible. Thus in this context, we employ Wilson-Sommerfeld quantisation rule to calculate the higher energy states like $n=1,000$ or more,

$$
\begin{equation*}
\int_{x_{2}}^{x_{1}} \sqrt{E_{n}-V(x)} d x=n \hbar \tag{7}
\end{equation*}
$$

here, x_{1}, x_{2} are the left and right boundary of the classical limits. Using this Eq. (7), we will not be able to get the semiclassical energy of the desire state. But using this we can easily compare the higher excited state of two potential expected to be isospectral. Suitable match of the SUSY partners can also be verified. Application of this rule will, qualitatively, serve the purpose. If the energy states obtained by using both the potential are same then one can't say that the pair is mirror image. Thus we have derived Best fit polynomial expression to the SUSY partners. If these derived one follows the Eq. (6) then they are mirror image. The steps can be pointed as:
(a) We calculate the ground and lower excited state energies of the SUSY partner potential using coupled variation principle.
(b) We calculate the higher excited state energy of the SUSY partner potential using Wilson-Sommerfeld quantisation rule.
(c) Then we compare the \bar{E}_{n} of both the potentials. In all cases they must be equal and
(d) We finally optimise the best fit polynomial to the SUSY partners. Then we verify them by using variation principle and Eq. (6).

4 The strategy

The first aim is to construct the SUSY partner potentials. Recently considerable work is reported in respect of successful construction of the best possible SUSY partners $\bar{V}_{0}^{+}(x)$ using both linear and non-linear variation techniques $[35,36]$. This construction can easily been explained by variation concept, by increasing the parameter in the trial function we can increase the accuracy of the result. More accurate the result is more accurate will be the SUSY partner. Thus one has to employ the equation

$$
\begin{equation*}
V_{0}^{+}(x)=V_{0}(x)-2 \frac{d^{2}}{d x^{2}} \ln \bar{\psi}_{0} \tag{8}
\end{equation*}
$$

Finally, it will be checked whether

$$
\begin{equation*}
\Delta T_{P}^{2}=\Delta V_{P}^{2}=\Delta T_{I}^{2}=\Delta V_{I}^{2} \tag{9}
\end{equation*}
$$

(here, P is for parent potential and I is for its isospectral partner) is true for this mirror image isospectral pair. Actually one of the necessary conditions of a bound stationary state to obey is

$$
\begin{equation*}
\Delta T_{n}^{2}=\Delta V_{n}^{2} \tag{10}
\end{equation*}
$$

This is a virial like theorem. Recently, these necessary conditions have been employed to optimise the stationary state [37].

Practical success of the above-mentioned strategy depends crucially on the well behave nature of wave function. The general feature of the variational method is that the energy is more accurately obtained than the wave function. In our case, however, accuracy of the wave function is of prime importance. Therefore, near-exact ψ_{0} is required. An additional point is that the low lying average energies, convergence of which dictates the goodness of the corresponding wave functions mentioned above in linear variations, take proper account of the potential only around a small region of the origin and not the effect of the potential at large distances. Hence, unless one goes for higher-energy calculations with Eq. (6), it is difficult to say whether the generated SUSY partners are really precise. So, one needs to examine how accurately a few high-energy levels are estimated via this formalism. Thus, polynomial curve fitting has been applied to get the precise form of SUSY partners. Then these precise SUSY partner potentials are diagonalised to check how good they are. In this case same is also true that with increase of N goodness of ψ increases and also the correctness of the SUSY partners.

The final part is the proper choice of basis functions. Here, we choose to employ the Harmite polynomial $\left(H_{i}\right)$ along with their weight factor as basis function. These bases have already been found to be quite convenient in several types of variational calculations. They possess nice convergence properties as well. The trial state has the form,

$$
\begin{equation*}
\tilde{\psi}_{n}=\sum_{i=0}^{N} c_{i n} H_{i}(x, a) \exp \left(-a x^{2}\right) \tag{11}
\end{equation*}
$$

The virtues of using such basis functions are, in brief, as follows. First, integrals involved in \mathbf{H} are quite easy to evaluate. Second, existence of the nonlinear variational parameter 'a' allows one to adopt a coupled variational scheme that is far more powerful than purely linear variations. Third, convergence of the process as a function of N is ensured. Note that the basis set leads ultimately to a secular equation at each a. But, we also realize that the potential energy part becomes infinitely large as $a \rightarrow 0$. At the other extreme, when $a \rightarrow \infty$, the kinetic energy part behaves in a similar fashion. Thus, qualitatively, the uncertainty principle guarantees the existence of an optimal choice for ' a '. So, the practice is to adopt the following scheme. One choose a trial value for ' a ', constructs the \mathbf{H} matrix, diagonalises it, and optimize the coefficients such that the lowest energy is minimized, then one has to continue the same process at other a-values, and finally pick out the minimum of all such minima, corresponding to the optimal a-value. The states and energies are then assigned according to the usual practice of linear variation.

The tasks are now in order. Initially we solve the secular equation obtained by the coupled variation scheme for the pair of mirror image potential to know the energy spectrum and near-exact SUSY partner of them. Then we employ coupled variation scheme and the Wilson-Sommerfeld quantisation rule to check the energy states of the SUSY partner potential. Finally we verify the mirror image property using polynomial fitting.

5 Result and discussion

In this calculation four mirror image pair of potentials has been selected for study. They are,
I) Pair 1 :
II) Pair 2:
III) Pair 3:
IV) Pair 4:

$$
\begin{aligned}
& V_{1}(x)=x^{4}+x^{3} \\
& V_{2}(x)=x^{4}-x^{3} \\
& V_{3}(x)=x^{2}+3 x \\
& V_{4}(x)=x^{2}-3 x \\
& V_{5}(x)=x^{6}+5 x^{3} \\
& V_{6}(x)=x^{6}-5 x^{3} \\
& V_{7}(x)=x^{8}+8 x^{3} \\
& V_{8}(x)=x^{8}-8 x^{3}
\end{aligned}
$$

Fig. 1 Isospectral mirror image partner potentioal (pair: 1-4)
Table 1 Variational upper bound energies of potential $V_{1}\left(E_{n}\left(V_{1}\right)\right)$ and $V_{2}\left(E_{n}\left(V_{2}\right)\right)$ to show their Isospectrality and the energies of the constructed SUSY partners of $V_{1}\left(\hat{E}_{n}\left(V_{1}^{+}\right)\right)$and $V_{2}\left(\hat{E}_{n}\left(V_{2}^{+}\right)\right)$

n	$\bar{E}_{n}\left(V_{1}\right)$	$\bar{E}_{n}\left(V_{2}\right)$	$\bar{E}_{n}\left(V_{1}^{+}\right)$	$\bar{E}_{n}\left(V_{2}^{+}\right)$
0	0.90534122379329328	0.90534122379329328	3.44139883516941879	3.44139883516941879
1	3.44139883516941888	3.44139883516941888	6.97030911090063405	6.97030911090063405
2	6.97030911090063421	6.97030911090063421	11.04188490754895957	11.04188490754895957
3	11.04188490754895997	11.04188490754895997	15.55264760848110520	15.55264760848110520
4	15.55264760848110580	15.55264760848110580	20.43045851362828745	20.43045851362828745
5	20.43045851362828823	20.43045851362828823	25.62763947543625625	25.62763947543625625
6	25.62763947543625723	25.62763947543625723	31.10950017301015011	31.10950017301015011
7	31.10950017301015119	31.10950017301015119	36.84947893182145735	36.84947893182145735
8	36.84947893182145895	36.84947893182145895	42.82646092906619660	42.82646092906619660
9	42.82646092906619844	42.82646092906619844	49.02318303527965845	49.02318303527965845
10	49.02318303527966065	49.02318303527966065	55.42521858621073175	55.42521858621073175
11	55.42521858621073427	55.42521858621073427	62.02029759105175587	62.02029759105175587
12	62.02029759105175862	62.02029759105175862	68.79783278306858910	68.79783278306858910
13	68.79783278306859270	68.79783278306859270	75.74857814079152634	75.74857814079152634
14	75.74857814079153019	75.74857814079153019	82.86437604460450521	82.86437604460450521
15	82.86437604460451190	82.86437604460451190	90.13796569712776897	90.13796569712776897
16	90.13796569712777671	90.13796569712777671	97.56283507108613529	97.56283507108613529
17	97.56283507108614130	97.56283507108614130	105.1331045237715879	105.1331045237715879
18	105.1331045237717682	105.1331045237717682	112.8434339278030215	112.8434339278030215
19	112.8434339278031548	112.8434339278031548		

Table 2 Variational upper bound energies of potential $V_{3}\left(\bar{E}_{n}\left(V_{3}\right)\right)$ and $V_{4}\left(\bar{E}_{n}\left(V_{4}\right)\right)$ to show their Isospectrality and the energies of the constructed SUSY partners of $V_{3}\left(\bar{E}_{n}\left(V_{3}^{+}\right)\right)$and $V_{4}\left(\bar{E}_{n}\left(V_{4}^{+}\right)\right)$

n	$\bar{E}_{n}\left(V_{3}\right)$	$\bar{E}_{n}\left(V_{4}\right)$	$\bar{E}_{n}\left(V_{3}^{+}\right)$	$\bar{E}_{n}\left(V_{4}^{+}\right)$
0	-1.250	-1.250	0.75000000000000020	0.75000000000000020
1	0.750	0.750	2.75000000000000095	2.75000000000000095
2	2.750	2.750	4.75000000000000125	4.75000000000000125
3	4.750	4.750	6.75000000000000165	6.75000000000000165
4	6.750	6.750	8.75000000000000279	8.75000000000000279
5	8.750	8.750	10.75000000000000358	10.75000000000000358
6	10.750	10.750	12.75000000000000497	12.75000000000000497
7	12.750	12.750	14.75000000000000610	14.75000000000000610
8	14.750	14.750	16.75000000000000676	16.75000000000000676
9	16.750	16.750	18.75000000000000746	18.75000000000000746
10	18.750	18.750	20.75000000000000827	20.75000000000000827
11	20.750	20.750	22.75000000000000911	22.75000000000000911
12	22.750	22.750	24.75000000000000978	24.75000000000000978
13	24.750	24.750	26.75000000000001043	26.75000000000001043
14	26.750	26.750	28.75000000000001078	28.75000000000001078
15	28.750	28.750	30.75000000000001128	30.75000000000001128
16	30.750	30.750	32.75000000000001178	32.75000000000001178
17	32.750	32.750	34.75000000000001256	34.75000000000001256
18	34.750	34.750	36.75000000000001278	36.75000000000001278
19	36.750	36.750		

Figure 1 shows how these four pairs are individually related. The members of each pair are mirror images to each other. All the eight potentials are familiar anharmonic oscillator models with one symmetric and other asymmetric term. Construction of mirror image potential is easy. If one changes the sign of the co-efficient of asymmetric term in a bound potential, he obtains the mirror image pair of that potential. Let us initiate the discussion by checking the energies of the various processes. Theoretically each of the above pair is isospectral. Here, quantitatively energy description is necessary to analyse the SUSY partner potential and their mirror image property as well as isospectrality. The partner potential Equation in (8) is constructed apriori through the variational method applied on Eq. (2) by using Eq. (8). The Tables 1, 2, 3 and 4 would not only ensure the Isospectrality in lower energy states for all these constructed SUSY partners but also helps in analysing them. A glance at the 4th and 5th columns of Tables 1, 2, 3 and 4 reveals how nicely both the schemes converge. Only, we observe slight departures, at any fixed N, between the parent and SUSY partner potential. But, this is not surprising because here near-exact SUSY partner constructed. Here, for demonstrative purposes, we restrict ourselves up to $\mathrm{N}=50$. But, one needs to go beyond to obtain good results for higher excited states. This can be achieved by routinely increasing the size N of the \mathbf{H} matrix.
Table 3 Variational upper bound energies of potential $V_{5}\left(\bar{E}_{n}\left(V_{5}\right)\right)$ and $V_{6}\left(\bar{E}_{n}\left(V_{6}\right)\right)$ to show their Isospectrality and the energies of the constructed SUSY partners of $V_{5}\left(\bar{E}_{n}\left(V_{5}^{+}\right)\right)$and $V_{6}\left(\bar{E}_{n}\left(V_{6}^{+}\right)\right)$

n	$\left(\bar{E}_{n}\left(V_{5}\right)\right)$	$\left(\bar{E}_{n}\left(V_{6}\right)\right)$	$\left(\bar{E}_{n}\left(V_{5}^{+}\right)\right)$	$\left(\bar{E}_{n}\left(V_{6}^{+}\right)\right)$
0	-1.69860138485974633	-1.69860138485974633	2.47976062512098153	2.47976062512098153
1	2.47976062512098162	2.47976062512098162	7.09634306954690862	7.09634306954690862
2	7.09634306954690886	7.09634306954690886	12.90170790635694016	12.90170790635694016
3	12.90170790635694045	12.90170790635694045	19.66694346956141052	19.66694346956141052
4	19.66694346956141104	19.66694346956141104	27.24344124554507124	27.24344124554507124
5	27.24344124554507279	27.24344124554507279	35.55111927179807221	35.55111927179807221
6	35.55111927179807391	35.55111927179807391	44.52930851626846961	44.52930851626846961
7	44.52930851626847171	44.52930851626847171	54.13055404359221863	54.13055404359221863
8	54.13055404359222065	54.13055404359222065	64.31639751009146036	64.31639751009146036
9	64.31639751009146281	64.31639751009146281	75.05480100585844522	75.05480100585844522
10	75.05480100585844784	75.05480100585844784	86.31852000393103882	86.31852000393103882
11	86.31852000393104186	86.31852000393104186	98.08400635319288362	98.08400635319288362
12	98.08400635319288684	98.08400635319288684	110.33063603542357309	110.33063603542357309
13	110.33063603542357638	110.33063603542357638	123.04014685598846765	123.04014685598846765
14	123.04014685598847247	123.04014685598847247	136.19621752740337245	136.19621752740337245
15	136.19621752740337823	136.19621752740337823	149.78414526242562417	149.78414526242562417
16	149.78414526242563207	149.78414526242563207	163.79059396334608113	163.79059396334608113
17	163.79059396334609116	163.79059396334609116	178.20339422861044508	178.20339422861044508
18	178.20339422861045564	178.20339422861045564	193.01138218428961514	193.01138218428961514
19	193.01138218428962855	193.01138218428962855		

Table 4 Variational upper bound energies of potential $V_{7}\left(\bar{E}_{n}\left(V_{7}\right)\right)$ and $V_{8}\left(\bar{E}_{n}\left(V_{8}\right)\right)$ to show their Isospectrality and the energies of the constructed SUSY partners of $v_{7}\left(\hat{E}_{n}\left(V_{7}^{+}\right)\right.$and $v_{8}\left(\bar{E}_{n}\left(v_{8}^{+}\right)\right)$

n	$\left(\bar{E}_{n}\left(V_{7}\right)\right)$	$\left(\bar{E}_{n}\left(V_{8}\right)\right)$	$\left(\bar{E}_{n}\left(V_{7}^{+}\right)\right)$	$\left(\bar{E}_{n}\left(V_{8}^{+}\right)\right)$
0	-2.668 804706984087880	-2.668 804706984087880	2.920841171472823013	2.920841171472823013
1	2.920841171472823290	2.920841171472823290	8.664266367646561248	8.664266367646561248
2	8.664266367646561660	8.664266367646561660	15.9482409704728147	15.9482409704728147
3	15.9482409704728170	15.9482409704728170	24.5514107427396701	24.5514107427396701
4	24.5514107427396732	24.5514107427396732	34.3391884280783119	34.3391884280783119
5	34.3391884280783160	34.3391884280783160	45.2298873563700323	45.2298873563700323
6	45.2298873563700355	45.2298873563700355	57.1575391617946127	57.1575391617946127
7	57.1575391617946167	57.1575391617946167	70.0673862526311485	70.0673862526311485
8	70.0673862526311524	70.0673862526311524	83.9132579553706186	83.9132579553706186
9	83.9132579553706392	83.9132579553706392	98.6556026204484104	98.6556026204484104
10	98.6556026204484624	98.6556026204484624	114.260055508157261	114.260055508157261
11	114.260055508157762	114.260055508157762	130.696394447227991	130.696394447227991
12	130.696394447228499	130.696394447228499	147.937764028733562	147.937764028733562
13	147.937764028734278	147.937764028734278	165.960087513237671	165.960087513237671
14	165.960087513238194	165.960087513238194	184.741612607323603	184.741612607323603
15	184.741612607324754	184.741612607324754	204.262554676395181	204.262554676395181
16	204.262554676396093	204.262554676396093	224.504812237798159	224.504812237798159
17	224.504812237800082	224.504812237800082	245.451737014312927	245.451737014312927
18	245.451737014314630	245.451737014314630	267.087945828324789	267.087945828324789
19	267.087945828326610	267.087945828326610		

Table 5 Higher excited state energy calculation of the SUSY partner potentials of potential pair 1 to verify their mirror image property and Isospectrality using Wilson-Somerfield Quantisation Rule

n	\bar{E}_{n} of the parent isospectral pair	$\bar{E}_{n}\left(V_{1}^{+}\right)$	$\bar{E}_{n}\left(V_{2}^{+}\right)$
24		399.03947827375039020	399.03947827375039020
25	399.03947827375039124		
49		1008.74558388367331839	1008.74558388367331839
50	1008.74558388367331521		
99		2546.99507829092116904	2546.99507829092116904
100	2546.99507829092116851		
199		6426.1254960715963025	6426.1254960715963025
200	6426.12549607159630450		
499		21825.3626243248714071	21825.3626243248714071
500	21825.36262432487140801		
999		55020.0970409012597551	55020.0970409012597551
1000	55020.0970409012597561		
1999		138679.518730994970240	138679.518730994970240
2000	138679.518730994970234		
4999		470641.488076347255450	470641.488076347255450
5000	470641.488076347255432		
9999		1186054.41621450264660	1186054.41621450264660
10000	1186054.41621450264613		
49999		10141651.959707772500	10141651.959707772500
50000	10141651.959707772300		
99999		25555866.0132450175655	25555866.0132450175655
100000	25555866.0132450175452		

Our focus is on the SUSY partners of these isospectral mirror image pairs. Then employing the Wilson-Sommerfeld quantisation rule (Tables 5, 6, 7, 8) we can easily check the equality of the energies of the higher excited states of above said SUSY partner pair. These tables ($1,2,3,4,5,6,7,8$) clearly verify the mirror image property of these partner potentials. They have all the optimised and semi-classical energies identical. This is only possible when they are isospectral mirror image pair. Then from Fig. 3 it is completely clear that constructed SUSY partners are also mirror image to each other for a particular pair. The growth of these SUSY partner is same to the respective parent one (Fig. 2). Thus not only the energy but the mirror image property is also retained. These SUSY pairs are also isospectral mirror image pair. Thus, starting from one mirror image pair we have constructed another mirror image isospectral pair. The new pair is also SUSY partner of those potential. If one can apply SUSY theory again to construct the 2nd SUSY partner of the parent potentials, he will find another mirror image isospectral pair. Then, it is easy to conclude that starting from one mirror image pair and using SUSY theory one can construct infinite number of such pairs (if the parent potential is infinitely bound) whose energy spectrum is already known. These spectrums are known just by knowing the parent potential's spectrum. Thus it

Table 6 Higher excited state energy calculation of the SUSY partner potentials of potential pair 2 to verify their mirror image property and Isospectrality using Wilson-Somerfield Quantisation Rule

n	\bar{E}_{n} of the parent isospectral pair	$\bar{E}_{n}\left(V_{3}^{+}\right)$	$\bar{E}_{n}\left(V_{4}^{+}\right)$
24		97.7539072903777185100	97.7539072903777185100
25	97.7539072903777341		
49		197.750450515161378349	197.750450515161378349
50	197.75045051516142165		
99		397.751925437782372876	397.751925437782372876
100	397.75192543778235410		
199		797.75247369690863505	797.75247369690863505
200	797.75247369690824534		
499		1997.77556278226552146	1997.77556278226552146
500	1997.77556278226567812		
999		3997.7539842184648709	3997.7539842184648709
1000	3997.75398421846498012		
1999		7997.7664618301994878	7997.7664618301994878
2000	7997.76646183019949821		
4999		19997.7674164898384504	19997.7674164898384504
5000	19997.7674164898397652		
9999		39997.7670852847518805	39997.7670852847518805
10000	39997.76708528475187821		
49999		199997.790443169135156	199997.790443169135156
50000	199997.7904431691353452		
99999		399997.808699337234690	399997.808699337234690
100000	399997.8086993372347891		

not necessary that those isospectral potentials have to have common nth SUSY partner. Even, if they have SUSY partner isospectral to each other, then also one can construct isospectral partner potential. In this construction, mirror image property will play a major role.

At this end, one needs to concentrate on, the properties of this type of mirror image potential. Here for pair: 1 and pair: 3 the study has been done (Tables 9, 10). Ongoing calculation clearly indicates that they are obeying Eq. (10). Here for this variational calculation we choose $N=50$. Thus with increase of state error in the optimised function increases as a result deviation between ΔT_{n}^{2} and ΔV_{n}^{2} increases. At this end one can easily conclude that these virial like properties are same for enantiomers. This means that all the physical properties related to hamiltonian are same for the enantiomers.

Thus one can say that in isospectral potential related by mirror image property have these essential properties same. Again one can say that analysing one partner of the pair he will get the essential information of the other pair. Thus, they have magnitude of $\left\langle x^{l}\right\rangle$ (l is odd) same but opposite in direction. As a matter of fact one can easily say that a pair of molecule having same molecular formula, and magnitude of

Table 7 Higher excited state energy calculation of the SUSY partner potentials of potential pair 3 to verify their mirror image property and Isospectrality using Wilson-Somerfield Quantisation Rule

n	\bar{E}_{n} of the parent isospectral pair	$\bar{E}_{n}\left(V_{5}^{+}\right)$	$\bar{E}_{n}\left(V_{6}^{+}\right)$
24		798.7512577417359489	798.7512577417359489
25	798.7512577417359498		
49		2263.0351696761165716	2263.0351696761165716
50	2263.03516967611659871		
99		6404.5870099831592876	6404.5870099831592876
100	6404.58700998319834532		
199		18118.908009363695145	18118.908009363695145
200	18118.908009363786134		
499		71626.419340368444704	71626.419340368444704
500	71626.419340368456128		
999		202594.769652783833580	202594.769652783833580
1000	202594.76965278384125		
1999		573026.33777189050285	573026.33777189050285
2000	573026.33777189054324		
4999		2265091.8042663078313	2265091.8042663078313
5000	2265091.80426630765743		
9999		6406644.465118056078	6406644.465118056078
10000	6406644.465118056078		
49999		71628666.381092427807	71628666.381092427807
50000	71628666.381092427807		
99999		202595951.425219504546	202595951.425219504546
100000	202595951.425219513564		

dipole moment can have identical spectrum. This conclusion can also be done if one considers individual bond moments. Because, it is expected that all the bond moment except one have same for both. And that particular moment is different in direction not in magnitude. Thus these types of potentials are a nice 1D model to enantiomeric potentials.

In this demonstration we try to get a compact form of the SUSY partner potential obeying the concept that, at $x \rightarrow \infty$ the parent and SUSY partner has the same behaviour. We have applied this scheme to potential pair: 1 and pair: 3 using polynomial curve fitting. The potential obtained in this scheme as follows.

For pair: 1

$$
\begin{aligned}
& \bar{V}_{1}^{+}=2.1625925+0.7763113 x+1.7195307 x^{2}+0.9436015 x^{3}+0.9247491 x^{4} \\
& \bar{V}_{2}^{+}=2.1625925-0.7763113 x+1.7195307 x^{2}-0.9436015 x^{3}+0.9247491 x^{4}
\end{aligned}
$$

The correlation coefficient is 0.99999983 for both of the potential.
Range: $(-4 \leq x \geq 4$ and $0 \leq y \geq 1,000)$

n	\bar{E}_{n} of the parent isospectral pair	$\bar{E}_{n}\left(V_{7}^{+}\right)$	$\bar{E}_{n}\left(V_{8}^{+}\right)$
24		1207.1298949903079976	1207.1298949903079976
25	1207.1298949903079996		
49		3660.3788323202394456	3660.3788323202394456
50	3660.3788323202394856		
99		11096.9647855222914352560	11096.9647855222914352560
100	11096.964785522291437213		
199		33640.499153331836670	33640.499153331836670
200	33640.499153331836543		
499		145736.717831964852540	145736.717831964852540
500	145736.71783196485123		
999		441788.308836138640740	441788.308836138640740
1000	441788.30883613864654		
1999		1339255.915200778119800	1339255.915200778119800
2000	1339255.91520077813412		
4999		5801848.9959770199563	5801848.9959770199563
5000	5801848.9959770199897		
9999		17588036.6068025943665954	17588036.6068025943665954
10000	17588036.60680259438734		
49999		230976498.870380444434170	230976498.870380444434170
50000	230976498.87038044446521		
99999		700189410.504628713590	700189410.504628713590
100000	700189410.504628713618		

Plots showing potential V_{1} and its SUSY partner $\mathrm{V}_{1}{ }^{+}$Plots showing potential V_{2} and its SUSY partner $\mathrm{V}_{2}{ }^{*}$

Plots showing potential V_{3} and its SUSY partner $\mathrm{V}_{3}{ }^{+}$Plots showing potential V_{4} and its SUSY partner $\mathrm{V}_{4}{ }^{+}$

Plots showing potential V_{5} and its SUSY partner V_{5}^{+}Plots showing potential V_{6} and its SUSY partner $\mathrm{V}_{6}{ }^{+}$

Plots showing potential V_{7} and its SUSY partner $\mathrm{V}_{7}{ }^{+} \quad$ Plots showing potential V_{8} and its SUSY partner $\mathrm{V}_{8}{ }_{8}$

Fig. 2 Plot showing potential and its SUSY partner as a function of x

Fig. 3 Near-Exact SUSY partner potential for pair: 1-4 to show how these SUSY partner of respective pair related

For pair: 3

$$
\begin{aligned}
\bar{V}_{5}^{+}= & 0.9412744+1.6341096 x+5.5752057 x^{2}+4.5343999 x^{3}+0.0529349 x^{4} \\
& +0.0264288 x^{5}+0.9956145 x^{6} \\
\bar{V}_{6}^{+}= & 0.9412744-1.6341096 x+5.5752057 x^{2}-4.5343999 x^{3}+0.0529349 x^{4} \\
& -0.0264288 x^{5}+0.9956145 x^{6}
\end{aligned}
$$

The correlation coefficient is 0.99999978 for both of the potential.
Range: $(-3 \leq x \geq 3$ and $0 \leq y \geq 1,000)$
Here, initially the SUSY partner is constructed using optimised ground state wave function and obeying Eq. (8). Then using the point of that SUSY partner in a finite range these potentials are obtained so, error incurred in these potential is more. The solution is also same here. These potentials are diagonalised and the results are given in Table 11. Here the results are accurate upto 7-8 Again the interesting point is that these obtained potentials are also mirror image to each other. This also proves the effectiveness of
Table $9 \Delta T_{n}^{2}$ and ΔV_{n}^{2} values for potential V_{1} and V_{2} obtain by using the variationally optimised wave function to show the validity of Eq. (10)

n	$\left(\Delta T_{n}^{2}\left(V_{1}\right)\right)$	$\left(\Delta V_{n}^{2}\left(V_{1}\right)\right)$	$\left(\Delta T_{n}^{2}\left(V_{2}\right)\right)$	$\left(\Delta V_{n}^{2}\left(V_{2}\right)\right)$
0	0.823081202370159164	0.823081202370159164	0.823081202370159164	0.823081202370159164
1	3.438824437596260818	3.438824437596260818	3.438824437596260818	3.438824437596260818
2	8.858861324755793308	8.858861324755793308	8.858861324755793308	8.858861324755793308
3	18.901843761374258	18.901843761374258	18.901843761374258	18.901843761374258
4	34.815973825184394	34.815973825184394	34.815973825184394	34.815973825184394
5	57.757004090351781	57.757004090351781	57.757004090351781	57.757004090351781
6	88.788272133057151	88.788272133057151	88.788272133057151	88.788272133057151
7	128.90673361656016	128.90673361656016	128.90673361656016	128.90673361656016
8	179.05727294398959	179.05727294398959	179.05727294398959	179.05727294398959
9	240.1423233851972	240.1423233851972	240.1423233851972	240.1423233851972
10	313.028711317984	313.028711317984	313.028711317984	313.028711317984
11	398.552754865668	398.552754865668	398.552754865668	398.552754865668
12	497.524195841341	497.524195841341	497.524195841341	497.524195841341
13	610.72931528540	610.72931528540	610.72931528540	610.72931528540
14	738.93345664873	738.93345664873	738.93345664873	738.93345664873
15	882.8831063818	882.8831063818	882.8831063818	882.8831063818
16	1043.307635693	1043.307635693	1043.307635693	1043.307635693
17	1220.92077755	1220.92077755	1220.92077755	1220.92077755
18	1416.4218931	1416.4218931	1416.4218931	1416.4218931
19	1630.4970686	1630.4970686	1630.4970686	1630.4970686

Table $10 \Delta T_{n}^{2}$ and ΔV_{n}^{2} values for potential V_{5} and V_{6} obtain by using the variationally optimised wave function to show the validity of Eq. (7)

n	$\left(\Delta T_{n}^{2}\left(V_{5}\right)\right)$	$\left(\Delta V_{n}^{2}\left(V_{5}\right)\right)$	$\left(\Delta T_{n}^{2}\left(V_{6}\right)\right)$	$\left(\Delta V_{n}^{2}\left(V_{6}\right)\right)$
0	9.2009783291686282	9.2009783291686282	9.2009783291686282	9.2009783291686282
1	9.029280656276368	9.029280656276368	9.029280656276368	9.029280656276368
2	20.33079427470140	20.33079427470140	20.33079427470140	20.33079427470140
3	39.03176719593983	39.03176719593983	39.03176719593983	39.03176719593983
4	69.75405965858380	69.75405965858380	69.75405965858380	69.75405965858380
5	116.0554112468890	116.0554112468890	116.0554112468890	116.0554112468890
6	181.401069351620	181.401069351620	181.401069351620	181.401069351620
7	269.257679237920	269.257679237920	269.257679237920	269.257679237920
8	383.08943340181	383.08943340181	383.08943340181	383.08943340181
9	526.3597349907	526.3597349907	526.3597349907	526.3597349907
10	702.5317111677	702.5317111677	702.5317111677	702.5317111677
11	915.0684021656	915.0684021656	915.0684021656	915.0684021656
12	1167.432830131	1167.432830131	1167.432830131	1167.432830131
13	1463.08802415	1463.08802415	1463.08802415	1463.08802415
14	1805.49702848	1805.49702848	1805.49702848	1805.49702848
15	2198.12290411	2198.12290411	2198.12290411	2198.12290411
16	2644.4287280	2644.4287280	2644.4287280	2644.4287280
17	3147.8775908	3147.8775908	3147.8775908	3147.8775908
18	3711.9325951	3711.9325951	3711.9325951	3711.9325951
19	4340.056855	4340.056855	4340.056855	4340.056855

Table 11 Variational upper bound energies of the SUSY partner potentials (obtained by polynomial curve fitting) of mirror pair: 1 and 3

n	$\bar{E}_{n}\left(\bar{V}_{1}^{+}\right)$	$\bar{E}_{n}\left(\bar{V}_{2}^{+}\right)$	$\bar{E}_{n}\left(\bar{V}_{5}^{+}\right)$	$\bar{E}_{n}\left(\bar{V}_{6}^{+}\right)$
0	3.4413988	3.4413988	2.47976061	2.47976061
1	6.9703089	6.9703089	7.09634301	7.09634301
2	11.0418831	11.0418831	12.90170710	12.90170710
3	15.5526445	15.5526445	19.66694305	19.66694305
4	20.4304523	20.4304523	27.24344101	27.24344101
5	25.6276317	25.6276317	35.55111903	35.55111903
6	31.1094996	31.1094996	44.52930803	44.52930803
7	36.8494702	36.8494702	54.13055303	54.13055303
8	42.8264600	42.8264600	64.31639623	64.31639623
9	49.0231811	49.0231811	75.05479986	75.05479986
10	55.4252101	55.4252101	86.31851996	86.31851996
11	62.0202916	62.0202916	98.08400588	98.08400588
12	68.7978281	68.7978281	110.33063559	110.33063559
13	75.7485694	75.7485694	123.04014635	123.04014635
14	82.8643760	82.8643760	136.19621611	136.19621611
15	90.1379434	90.1379434	149.78414410	149.78414410
16	97.5628338	97.5628338	163.79059011	163.79059011
17	105.133134	105.133134	178.20339104	178.20339104
18	112.8434334	112.843434	193.01137022	193.01137022

mirror image property. Thus mirror image pairs have mirror image SUSY partners. Finally a recipe is given to construct infinite number of pair of isospectral potential starting from one pair. Again a compact form of the SUSY pair is obtained for this type of potentials. This fitting concept concretely proves the mirror image nature of the SUSY partners and can be applied to any potential during construction of their SUSY partner in a compact form. Mirror image potentials are very good 1D model to enantiomers. From this discussion one can say that SUSY partners of the enantiomers are nothing but other enantiomers. SUSY theory involving mirror image potentials can easily be used now, in constructing a series of enantiomers.

6 Conclusions

In summary, we have put forward here a scheme of testing the Isospectrality in a rigorous manner, only by using mirror image property of a pair of potential. To this end, we first obtain a pair of exact isospectral partner potential for problems that are not exactly solvable. We have successfully derived the 1D model to enantiomers. Then also we have found to offer sufficiently precise SUSY partner Hamiltonians H^{+}for all the cases under consideration. This is verified by spectral studies for quite a few energy levels of H^{+}and by analyzing the nature of V versus V^{+}plots. The observations are specifically noteworthy because the latter entails a first order error. Our error analysis
is particularly relevant to studies involving a hierarchy of SUSY Hamiltonians that are constructed with a view to allowing one to employ a smaller basis set for calculations of excited-state energies. We have also indicated a way of simplifying the forms of the partner potentials. The, obtained SUSY pair are also mirror image to each other. Thus one can expect the 2nd SUSY partners are also mirror image pair and so on. Thus a new family of SUSY pair is been created where each SUSY partner is mirror image to the corresponding other member of the pair. This should be quite rewarding in view of the close kinship of the SUSY theory with isospectral molecules and nanostructures and their thermodynamical features.

Acknowledgments Neetik Mukherjee is grateful to CSIR, India for financial support. He also gratefully acknowledges the support of computational infrastructure developed by Prof. S. N. Sarkar (Dept. of Electronic Science, University of Calcutta) in his fibre optics laboratory as well as helpful and critical discussion with him.

References

1. L.F. Urrutia, E. Hernández. Phys. Rev. Lett. 51, 755 (1983) and references therein
2. M.M. Nieto, Phys. Lett. B 145, 208 (1984)
3. A.A. Andrianov, N.B. Borisov, M.V. Ioffe, Phys. Lett. A 105, 19 (1984)
4. C.V. Sukumar, J. Phys. A 18, L57 (1985)
5. C.V. Sukumar, J. Phys. A 18, 2917 (1984)
6. R. Dutt, A. Khare, U.P. Sukhatme, Am. J. Phys. 56, 163 (1984)
7. F. Cooper, A. Khare, U.P. Sukhatme, Phys. Rep. 251, 267 (1984)
8. F. Cooper, A. Khare, U.P. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001)
9. A.R.P. Rau, J. Phys. A 37, 10421 (2004)
10. W.Y. Keung, E. Kovacs, U.P. Sukhatme, Phys. Rev. Lett. 60, 41 (1988)
11. A. Gangopadhyay, P.K. Panigrahi, U.P. Sukhatme, Phys. Rev. A 47, 2720 (1984)
12. F. Cooper, J. Dawson, H. Shepard, Phys. Lett. A 187, 140 (1994)
13. D.J.C. Fernandez, V. Hussin, B. Mielnik, Phys. Lett. A 244, 309 (1998)
14. J.J. Peña, G. Ovando, D. Morales-Guzmán, J. Morales, Int. J. Quantum Chem. 85, 244 (2004)
15. A. Khare, U. Sukhatme, J. Phys. A 37, 10037 (2004)
16. R. Dutt, A. Khare, U.P. Sukhatme, Am. J. Phys. 59, 723 (1991)
17. G. Chen, Phys. Scr. 69, 257 (2004)
18. G. Le'vai, J. Phys. A 37, 10179 (2004)
19. J. Morales, J.J. Pena, G. Ovando, J.J. García-Ravelo, Mol. Struct. (Theochem) 769, 9 (2006)
20. E. Gozzi, M. Reuter, W. Thacker, Phys. Lett. A 183, 29 (2003)
21. E.D. Filho, R.M. Ricotta, Phys. Lett. A 320, 95 (2003)
22. D.J. Kouri, T. Markovich, N. Maxwell, E.R. Bittner, J. Phys. Chem. 113, 15257 (2009)
23. E.R. Bittner, J.B. Maddox, D.J. Kouri, J. Phys. Chem. 113, 15276 (2009)
24. W.Y. Keung, U.P. Sukhatme, Q. Wang, T.D. Imbo, J. Phys. A Math. Gen. 22, L987 (1989)
25. S.T. Epstein, The Variational Method in Quantum Chemistry, 2nd edn. (Academic Press, New York, 1974)
26. W. Yurgrau, S. Mandelstam, Variational Principle in Dynamics and Quantum Theory, 3rd edn. (Dover Publications, New York, 1979)
27. D.J. Griffith, Introduction to Quantum Mechanics, 2nd edn. (PEARSON, Education, Addison-Wesley, 2006)
28. C.R. Moon, L.S. Mattos, B.K. Foster, G. Zeltzer, W. Ko, H.C. Manoharan, Science 319, 782 (2008)
29. N. Tyutyulkov, F. Dietz, G. Olbrich, Int. J. Quantum Chem. 62, 167 (1998)
30. W.C. Herndon, Tetrahedron Lett. 15, 671 (1974)
31. W.C. Herndon Jr, M.L. Ellzey, Tetrahedron 31, 99 (1975)
32. E.L. Eliel, S.H. Wilen, Stereochemistry of Organic Compounds (Wiley Student edition, New York, 1994)
33. K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering, 1st edn. (Cambridge University Press, Cambridge, 1998)
34. J.L. Powell, B. Crasemann, Quantum Mech. (Narosa Publishing House, New Delhi, 1998)
35. N. Mukherjee, R.K. Pathak, K. Bhattacharyya, Int. J. Quantum Chem. 111, 3591 (2011)
36. N. Mukherjee, K. Bhattacharyya, Int. J. Quantum Chem. 112, 960 (2012)
37. N. Mukherjee, J. Math. Chem. 50, 2303 (2012)

[^0]: N. Mukherjee (\boxtimes)

 Department of Chemistry, University of Calcutta, 92, A. P. C Road, Kolkata, 700009, India
 e-mail: pchem.neetik@gmail.com

